Heisenberg-limited metrology with information recycling
نویسندگان
چکیده
(2015) Heisenberg-limited metrology with information recycling. This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
منابع مشابه
General optimality of the Heisenberg limit for quantum metrology.
Quantum metrology promises improved sensitivity in parameter estimation over classical procedures. However, there is a debate over the question of how the sensitivity scales with the resources and the number of queries that are used in estimation procedures. Here, we reconcile the physical definition of the relevant resources used in parameter estimation with the information-theoretical scaling...
متن کاملMetrology with entangled states
It is well known that classical states of light exhibit shot noise, characteristic of independent or uncorrelated particles. For phase estimation problems, this leads to a shot-noise limited uncertainty of 1/sqrt[N], where N is the number of particles detected. It is also well known that the shot-noise limit is not fundamental: squeezed states and entangled states can be used for sub-shot-noise...
متن کاملQuantum metrology with mixed states: When recovering lost information is better than never losing it
Quantum-enhanced metrology can be achieved by entangling a probe with an auxiliary system, passing the probe through an interferometer, and subsequently making measurements on both the probe and auxiliary system. Conceptually, this corresponds to performing metrology with the purification of a (mixed) probe state. We demonstrate via the quantum Fisher information how to design mixed states whos...
متن کاملNonlinear metrology with a quantum interface
We describe nonlinear quantum atom–light interfaces and nonlinear quantum metrology in the collective continuous variable formalism. We develop a nonlinear effective Hamiltonian in terms of spin and polarization collective variables and show that model Hamiltonians of interest for nonlinear quantum metrology can be produced in 87Rb ensembles. With these Hamiltonians, metrologically relevant ato...
متن کاملQuantum Metrology: Surpassing the shot-noise limit with Dzyaloshinskii-Moriya interaction
Entanglement is at the heart of quantum technologies such as quantum information and quantum metrology. Providing larger quantum Fisher information (QFI), entangled systems can be better resources than separable systems in quantum metrology. However the effects on the entanglement dynamics such as decoherence usually decrease the QFI considerably. On the other hand, Dzyaloshinskii-Moriya (DM) i...
متن کامل